Artificial Intelligence
Adversarial Search

Games

e Multiagent environment
e Cooperative vs. competitive

— Competitive environment is where the agents’ goals are in
conflict

— Adversarial Search
e Game Theory

— A branch of economics

— Views the impact of agents on others as significant rather
than competitive (or cooperative).

Properties of Games

e Game Theorists

— Deterministic, turn-taking, two-player, zero-sum games of perfect
information

— Deterministic
— Fully-observable
— Two agents whose actions must alternate

— Utility values at the end of the game are equal and opposite
* In chess, one player wins (+1), one player loses (-1)

e |tis this opposition between the agents’ utility functions that makes the
situation adversarial

Why Games?

Small defined set of rules
Well defined knowledge set
Easy to evaluate performance
Large search spaces

— Too large for exhaustive search

Fame and Fortune
— e.g. Chess and Deep Blue

Games as Search Problems

e Games have a state space search
— Each potential board or game position is a state

— Each possible move is an operation to another
state

e Large branching factor (about 35 for chess)
e Terminal state could be deep (about 50 for chess)

Games vs. Search Problems

e Unpredictable opponent
e Solution is a strategy

— Specifying a move for every possible opponent
reply
e Time limits

— Unlikely to find the goal...agent must approximate

Types of Games

Deterministic |Chance
Perfect Chess, Backgammon,
Information | ¢heckers, go, monopoly
othello
Imperfect Bridge, poker,
Information scabble, nuclear

war

Example Computer Games

Chess — Deep Blue (World Champion 1997)
Checkers — Chinook (World Champion 1994)
Othello — Logistello

— Beginning, middle, and ending strategy

— Generally accepted that humans are no match for
computers at Othello

Backgammon — TD-Gammon (Top Three)
Go — Goemate and Go4++ (Weak Amateur)
Bridge (Bridge Barron 1997, GIB 2000)

— Imperfect information
— multiplayer with two teams of two

Optimal Decisions in Games

Consider games with two players (MAX, MIN)
Initial State
— Board position and identifies the player to move

Successor Function

— Returns a list of (move, state) pairs; each a legal move and
resulting state

Terminal Test
— Determines if the game is over (at terminal states)

Utility Function

— Objective function, payoff function, a numeric value for
the terminal states (+1, -1) or (+192, -192)

Game Trees

e The root of the tree is the initial state
— Next level is all of MAX’s moves
— Next level is all of MIN’s moves

e Example: Tic-Tac-Toe
— Root has 9 blank squares (MAX)
— Level 1 has 8 blank squares (MIN)
— Level 2 has 7 blank squares (MAX)

e Utility function:
— win for Xis +1
— winforOis -1

MAX (X]

MIN (O]

MAX (X)

MIN (O]

TERMINAL

Utility

Game Trees

X
X X
X X
0 X[To] X[
0

olx| [x[o x|0

X X
olx] [x[o[x] [x[o
ofx| [ofo[x X
0 X[x[o| [X[o
-1 0 +1

Minimax Strategy

Basic Idea:

— Choose the move with the highest minimax value
* best achievable payoff against best play

— Choose moves that will lead to a win, even though min is trying to
block

Max’s goal: getto 1
Min’s goal: get to -1

Minimax value of a node (backed up value):
— If N is terminal, use the utility value
— If N is a Max move, take max of successors
— If N is a Min move, take min of successors

MAX

MIN

Minimax Strategy

13

Minimax Algorithm

function MINIMAX-DECISION(state, game) returns an action

action, state « the a, s in SUGCESSDHS[S;ME]

such that MINIMAX-VALUE(s, game) is maximized
return action

function MINIMAX-VALUE(sg¢e, game) returns a utility value

if TERMINAL-TEST(state) then
return UTILITY(S¢q¢e)

else if MAX is to move in state then

return the highest MINIMAX-VALUE of SUCCESSORS(state)
else

return the lowest MINIMAX-VALUE of SUC{JESSDRS{Smgﬂ)

14

Properties of Minimax

Complete
— Yes if the tree is finite (e.g. chess has specific rules for this)
Optimal
— Yes, against an optimal opponent, otherwise???
Time
— O(b™)
Space
— O(bm) depth first exploration of the state space

Resource Limits

e Suppose there are 100 seconds, explore 10 nodes /
second

e 10° nodes per move

e Standard approach
— Cutoff test — depth limit

e guiesence search —values that do not seem to change

— Change the evaluation function

Evaluation Functions

e Example Chess:

— Typical evaluation function is a linear sum of
features

— Eval(s) = w,f(s) + w,f,(s) + ... + w_f (s)

*w,=9
e f,(s) = number of white queens) — number of black
gueens

* etc.

Alpha-Beta Pruning

 The problem with minimax search is that the
number of game states is has to examine is
exponential in the number of moves

e Use pruning to eliminate large parts of the
tree from consideration

* Alpha-Beta Pruning

Alpha-Beta Pruning

 Recognize when a position can never be
chosen in minimax no matter what its children
are
— Max (3, Min(2,x,y) ...) is always > 3
— Min (2, Max(3,x,y) ...) is always < 2
— We know this without knowing x and y!

Alpha-Beta Pruning

Alpha = the value of the best choice we've
found so far for MAX (highest)

Beta = the value of the best choice we’ve
found so far for MIN (lowest)

When maximizing, cut off values lower than
Alpha

When minimizing, cut off values greater than
Beta

Alpha-Beta Pruning Example

MAX 23

MIN 3

Alpha-Beta Pruning Example

MAX 23

MIN 3 /7<
X X

Alpha-Beta Pruning Example

MAX

MIN

Alpha-Beta Pruning Example

MAX

MIN

Alpha-Beta Pruning Example

MAX

MIN

A Few Notes on Alpha-Beta

o Effectiveness depends on order of successors (middle
vs. last node of 2-ply example)

e |f we can evaluate best successor first, search is
O(b¥2) instead of O(bY)

 This means that in the same amount of time, alpha-
beta search can search twice as deep!

A Few More Notes on Alpha-Beta

* Pruning does not affect the final result

e Good move ordering improves effectiveness of
pruning

 With “perfect ordering”, time complexity
O(b™/2)
— doubles the depth of search

— can easily reach depth of 8 and play good chess
(branching factor of 6 instead of 35)

Optimizing Minimax Search

Use alpha-beta cutoffs
— Evaluate most promising moves first

Remember prior positions, reuse their backed-up
values
— Transposition table (like closed list in A*)

Avoid generating equivalent states (e.g. 4 different
first corner moves in tic tac toe)

But, we still can’t search a game like chess to the
end!

Cutting Off Search

e Replace terminal test (end of game) by cutoff test
(don’t search deeper)

e Replace utility function (win/lose/draw) by heuristic
evaluation function that estimates results on the
best path below this board

— Like A* search, good evaluation functions mean good
results (and vice versa)

 Replace move generator by plausible move generator
(don’t consider “dumb” moves)

Alpha-Beta Algorithm

function ALPHA-BETA-SEARCH(state, game) Teturns an action
action, state < the a, s in SUCCESSORS[game](SmtE)

such that MIN-VALUE(s, game, —00, +00) is maximized
return action

function MAX-VALUE(state, game, o, 3) returns the minimax value of state

if CUTOFF-TEST(S¢qte) then return EVAL(state)
for each s in SUCCESSORS(state) do

a < max(a, MIN-VALUE(s, game, a, 3))

if a > 3 then return
return o

function MIN-VALUE(state, game, a, 3) returns the minimax value of state

if CUTOFF-TEST(5¢qte) then return EVAL(state)
for each s in SUCCESSORS(state) do

B < min(5, MAX-VALUE(s, game, «, 3))

if 8 < « then return a
return

30

Nondeterministic Games

* In nondeterministic games, chance is
introduced by dice, card shuffling

e Simplified example with coin flipping.

Nondeterministic Games

MAX /\

CHANCE {® (™1

0.5 0.5 0.5 0.5

MIN 2/ 4\/ 0/ -2V

Algorithm for Nondeterministic Games

e Expectiminimax give perfect play
— Just like Minimax except it has to handle chance nodes

if state is a MAX node then
— return highest Expectiminimax — Value of Successors(state)

if state is a MIN node then
— return lowest Expectiminimax — Value of Successors(state)

if state is a CHANCE node then

— return average Expectiminimax — Value of Successors(state)

Summary

e Games are fun to work on! (and dangerous)
 They illustrate several important points about Al

— Perfection is unattainable -> must approximate
— Good idea to “think about what to think about”
— Uncertainty constrains the assignment of values to states

e Games are to Al as the Grand Prix is to automobile
design

